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Why do we need to scale deep learning applications?
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e Rapid prototyping/model evaluation e Volume of scientific datasets can be

large
e Problem scale 9

e Scientific datasets can be complex
(multivariate, high dimensional)



Why do we need to scale deep learning applications?

AlexNet to AlphaGo Zero: A 300,000x Increase in Compute
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Parallelism strategies
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Fig. credit: Ben-Nun and Hoefler arXiv:1802.09941 4
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Data parallelism, synchronous Updates

Gradients are computed locally and summed \

across nodes. Updates are propagated to all

nodes \

o stable convergence
W

e scaling is not optimal because all nodes have

to wait for reduction to complete /

e global (effective) batch size grows with

ALL-REDUCE
SYNC. STEP

=

Synchronous SGD, decentralized
number of nodes



Data parallelism, asynchronous Updates

Gradients are sent to parameters server.
Parameters servers incorporates gradients
into model as they arrive and sends back
the updated model

e nodes don’t wait (perfect scaling)
e resilient

e stale gradients impact convergence

rate (depends on #workers) Asynchronous SGD, parameter-server

e parameter server is a bottleneck



Large-Batch Training (LBT), synchronous weak scaling

o applies to SGD-type algorithms

o data batch per node. Model updates are computed independently
o updates are collectively summed and applied to the local model

Local batch-size = B
Global batch-size =N * B

8
o C
<5




Stochastic Gradient Descent (SGD)

Wiy ¢ Wy — % S VL(z, wy)

N is total sample size
B is batch-size
n is learning rate

Aw is the parameter update in one gradient descent step




Linear learning-rate scaling

n—N*n

Upper: 3 SGD steps w. learning-rate = n
Lower: 1 SGD step w. learning-rate = 3 * n



Sqrt learning-rate scaling

n — sqart(N) * n

Motivated by the observation that the variance of the gradient scales with 1/batch-
size:

Aw, Aw) ~ T (= TN g;gT
COV( w, w)NB(NZizlglgi)
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Learning-rate scaling

In practice, we see anywhere between sub-sqrt (e.g.You et al. arXiv:1708.03888) to
linear scaling (e.g. Goyal et al. arXiv:1706.02677)

Recent OpenAl (arXiv:1812.06162) study has illuminated the dependence of optimal
learning-rate on batchsize:

Optimal Learning Rate
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Challenges with Large Batch Training

e Training with large learning rates is not stable in the initial stages of the training
V L(wiy1) = VL(wt) assumption breaks when parameters are changing rapidly

e A generalization gap appears: networks trained with small batches tend to
optimize and generalize better

AlexNet-BN for ImageNet
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Explaining the generalization gap?

“... large-batch ... converge to sharp minimizers of the training function ... In
contrast, small-batch methods converge to flat minimizers” -- Keskar et al,
arXiv:1609.04836

Training Function
s

.
! Testing Function

Flat Minimum Sharp Minimum

Conceptual sketch of sharp and flat minimas of a loss function

NERSC Fig. credit: Keskar et al, arXiv:1609.04836 13




Explaining the generalization gap?

B =64 B =128

B = 2048
Loss at the end of training CIFAR-10 (axes are dominant eigenvectors of the Hessian)

m Z.Yao et al. arXiv:1802.08241
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ResNet-50 ImageNet in 1 hour

FaceBook scaling result in 2017, batch-size=8k (using 256 GPUs):

e Linear learning-rate warm-up over 5 epochs to target rate
e Linear scaling of learning-rate (N * n) followed by original decay schedule
e The paper also clarifies subtleties and common pitfalls in distributed training
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Adaptive batch-size scaling with 2nd-order information (ABSA)

Z. Yao et al. arXiv:1810.01021 close the generalization gap for a wide range of
architectures on image classification tasks, using

e 2nd-order info. (~ loss surface curvature) to adaptively increase the batch-size
e adversarial training to regularize against “sharp-minima”
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ABS and ABSA with ResNet-18 on ImageNet dataset with up to 16k batch-size



Limits of batch-size scaling

Recent empirical studies by OpenAl
(arXiv:1812.06162) and Google
Brain (arXiv:1811.03600) show that:

e A relationship between gradient
noise scale and “critical” batch-
size holds across many models,
algorithms and datasets

e ’“gradient noise scale predicts
maximum useful batch-size”

e More complex datasets/tasks
have higher gradient noise, thus
can benefit from training with
larger batch-sizes

Gradient

noise scale
measures the
variation of the
gradients between
different training
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Critical batch size is the maximum batch size above

which scaling efficiency decreases significantly
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Scaling DL outlook

e Distributed training is imperative for larger and more complex models/datasets

e Data parallelism distributes more data among more workers

e Large batch training is unstable and may impact generalization error if hyper-
parameters are not “tuned” well

e Use learning-warm up and linear scaling to scale to modest scales < 10x. No
guarantees that it will work for all models

e Batch-size scaling seems to be more robust across many models

e A simple statistic, gradient noise scale, can predict maximum useful batch-size

18



Practical stuff
(systems, software, examples)

19



Software for Deep Learning

Several popular Deep Learning frameworks
« TensorFlow, Keras, PyTorch, ...

Backed by hardware-optimized libraries

« MKL-DNN, cuDNN O PyTorch

Scalable distributed training libraries
» Horovod, Cray ML Plugin, Mesh-TensorFlow, MPI-Learn

Support for various kinds of hardware
« CPUs, GPUs, TPUs, FPGAs, other custom chips




Supercomputers

Big machines with diverse,
heterogeneous, high-
performance hardware

 Big FLOPS
* High-speed interconnects

* High-bandwidth file
systems

Rank System

1

https://www.top500.0rqg/

Summit - IBM Power System AC922, IBM POWER9 22C 3.07GHz, NVIDIA
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM

DOE/SC/Oak Ridge National Laboratory

United States

Sierra - IBM Power System S922LC, IBM POWER9 22C 3.1GHz, NVIDIA
Volta GV100, Dual-rail Mellanox EDR Infiniband , IBM / NVIDIA / Mellanox
DOE/NNSA/LLNL

United States

Sunway TaihuLight - Sunway MPP, Sunway SW26010 260C 1.45GHz,
Sunway, NRCPC

National Supercomputing Center in Wuxi

China

Tianhe-2A - TH-IVB-FEP Cluster, Intel Xeon E5-2692v2 12C 2.2GHz, TH
Express-2, Matrix-2000 , NUDT

National Super Computer Center in Guangzhou

China

Piz Daint - Cray XC50, Xeon E5-2690v3 12C 2.6GHz, Aries interconnect ,
NVIDIA Tesla P100, Cray Inc.

Swiss National Supercomputing Centre (CSCS)

Switzerland

Cores

2,397,824

1,572,480

10,649,600

4,981,760

387,872

- Traditionally support large, parallel “simulation” applications

Rmax Rpeak
(TFlop/s) (TFlop/s)

143,500.0 200,794.9

94,640.0 125,712.0

93,014.6 125,435.9

61,4445 100,678.7

21,230.0 27,154.3

- Growing interest and support for data analytics and ML workloads

Power
(kW)

9,783

7,438

15,371

18,482

2,384



The Perlmutter supercomputer

e Next-gen NERSC system optimized for science | |

e First Cray Shasta system —

e GPU-accelerated (4x NVIDIA) nodes and CPU- CPU-GPU Nodes
only (AMD) nodes

e Cray Slingshot high performance network

e Single-tier All-Flash Lustre based file system

External File-
systems &
Networks

Ethernet Compatible

30 PB, 4 TB/s

“Slingshot” Interconnect

A

Delivered late 2020

https://www.nersc.gov/systems/perimutter/




Distributed training tutorial

Latest code version:

https://github.com/sparticlesteve/sea19-dl-tutorial

Has basic CNN single-node example on CIFAR10 dataset
Uses ResNet on CIFAR10 to demonstrate distributed training
Uses Keras and Horovod for distributed training

e Easiest to use/teach

23



Horovod

Enables distributed synchronous AR et BT T e
data-parallel training with minimal X, 'fq§,¢g%g. Mk\ 1%«&%»3\

changes to user code

T

Uses ring all-reduce and MPI to
collectively combine gradients
across Workers M Distributed TensorFlow ™ Horovod Oldeal

ResNet-101
Such approaches shown to scale o

better than parameter-server
approaches (e.g. distributed
TensorFlow with gRPC)

128

Number of GPUs
https://eng.uber.com/horovod/




Cray ML Plugin

Enables distributed synchronous
data-parallel training with minimal

changes to user code

Uses RDMA operations or

reductions

Might perform better than Horovod L

on large networks and large scales I I
J___-_I-.-I.I

12

Includes some advanced features T
for performance: gradient lag, hiding
communication NERSC CosmoFlow

| NERsC. 25



Ingredients for multi-node training with Horovod

Initialize Horovod and MPI:

hvd.init()

Wrap your optimizer in the Horovod distributed optimizer:

opt = keras.optimizers.SGD(1r=1r*hvdgEiiiii: ces)
opt = hvd.DistributedOptimizer(opt) Linearly scaling the
I :
Construct the variables broadcast callback: earning rate

callbacks = [
hvd.callbacks.BroadcastGlobalVariablesCallback(9)
]

26



Ingredients for multi-node training

Train model as usual; it should now synchronize at every mini-batch step:

model.fit(..., callbacks=callbacks)

Launch your script with MPI

mpirun -n NUM_RANKS .. python train.py ..

(we’ll use SLURM and srun instead of mpirun)

27



Scaling results for ResNet CIFAR10
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Training loss and accuracy are still converging at similar rates
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Science examples
(climate, cosmology)

29



Deep Learning for climate analytics

- Global warming increases rate of extreme weather phenomena
- We want to make quantifiable predictions about these effects

- Need to identify these phenomena in simulated climate data
- Heuiristic labeling algorithms are imperfect
- Hand labeling is too tedious




Seg mentatlon https://arxiv.org/abs/1810.01993

Segmented Atmospheric Rivers 2107-09-24 Integrated Water Vapor 2107-08-7

o

ﬂ' ,s-z,_

., s el
120°W  60°W 0° 60°E  120°E 120°W  60°W v 60°E  120°E
—— Atmospheric River —— Tropical Cyclone

Collaboration between NERSC, NVIDIA, UCB, OLCF
Pixel-level classification of extreme weather phenomena

- 3 classes: atmospheric river, tropical cyclone, background
- High class imbalance, mostly background
Labels acquired via heuristic algorithms



Seg m entat 1on https://arxiv.org/abs/1810.01993

input output

Architectures DeepLabv3+

1152768, lﬁ/i/ 1152x 768, 3

1
encoder decoder

- Modified Tiramisu and
DeeplLabV3+
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+ TensorFlow, Horovod
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Customizations for scaling
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Segmentation results https://arxiv.org/abs/1810.01993

Predicted Extreme Weather Patterns 2107-07-07 Ground Truth Extreme Weather Patterns 2107-07-07
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Best result for intersection-over-union (loU) obtained: ~73%
Deep learning results are smoother than heuristic labels
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Scaling performance
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Deep Learning for cosmology

Cosmology seeks to answer

questions about

« The nature of dark matter

. The nature of dark energy

« The inflation of the early
universe

The answers are encoded In
the structure of the universe
 How can Deep Learning help?




Amrita Mathuriya, Deborah Bard, Peter Mendygral, Lawrence
Meadows, James Arnemann, Lei Shao, Siyu He, Tuomas Karna,

COsmO FIOW Daina Moise, Simon J. Pennycook, Kristyn Maschoff, Jason Sewall,

1x 128’

I 16X 63°

Average_pooling3d_1

Conv3d_1 + leaky relu
e 16X 126°

Conv3d_2 + leaky relu

Collaboration between NERSC, Cray, Intel

Predicting cosmological parameters from
3D voxels of Dark Matter simulations

Uses TensorFlow and Cray PE ML Plugin
for scalable distributed training
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CosmoFlow results

Successful prediction of 3 cosmological parameters

Comparable to experimental uncertainties for 2,

and gg, almost 5x better for N.

Scaled to 3.5PF on Cori with 8k KNL nodes
Convergence issues at scale for further study
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